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ABSTRACT     

Introduction: PRPs can be used in the management of tendinopathy if we improve our 

understanding of pathophysiology and achieve to integrate molecular knowledge about 

PRP participation in healing mechanisms. 

Areas covered: We provide new insights into the pathophysiology of tendinopathy, 

PRP therapies, and the potential links between both. We discuss the place of PRP in 

promoting tendon repair within what is currently understood of the role of PRP 

molecules in promoting tendon regeneration. We also highlight the many opportunities 
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for further exploration and identification of strategically designed treatments providing 

meaningful clinical benefit. 

Expert opinion: Development of PRP treatments is challenging because the typical 

group of patients with tendinopathy does not exist, as it affects multiple segments of the 

population. Moreover, the pathophysiology and origin of pain are not elucidated yet. 

Although some degree of success has been achieved, PRP is not considered standard 

medical treatment, nor is it paid\reimbursed by insurance companies. However, the 

arguments for using PRP in tendinopathy are increasing, and its potential to rebalance 

inflammation merits further research. Moreover, PRP contains tendoinductive factors 

that can drive the fate of stem cells. Tailoring PRPs to the specific needs of the host 

tendon has not been possible to date, because unanswered questions remain about the 

characteristics of tendinopathy within the different stages of progression. PRP can be 

part of a tendinopathy management program, including load and pain management. 

 

Key words 
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Highlight box  

• The foundation of PRP application is to modify the molecular milieu by 

providing supraphysiological concentrations of platelets (and optionally 

leukocytes) at the injured/pathological tissues mimicking the initial stages of 

healing.  

• However, the efficacy of PRP is controversial in tendinopathies, given the 

contrasting results from well performed randomized controlled trials. 
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• When extending current knowledge about PRP efficacy, it is important to 

consider the diversity of PRP formulations and provide clinical results with the 

full description of the PRP used and the protocol for application. 

• The simplest way to customize PRP for the specific application consists of 

selecting among clinically available formulations, the timing of application, as 

well as the number of doses. These essentials of PRP treatment have not yet 

been optimized.  

• Another logical step forward is to produce combinatory treatments by 

identifying what really matters to associate PRP with selected molecular 

inhibitors or enhancers for each clinical application. PRP has been combined 

with different cell phenotypes to treat tendon conditions. 

• PRP is not a monotherapy; it should be used as part of a tendinopathy 

management program including load and pain management. 
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1. INTRODUCTION 

Tendinopathies are musculoskeletal conditions often induced by cumulative tendon 

microinjuries at sites of strain. Likewise, tendon conditions can result from excessive 

overload or trauma provoking acute macroscopic tendon tears. Clinically, 

tendinopathies are characterized by focal tendon soreness, lessened strength, pain upon 

activities and progressive reduction in function [1]. Habitually, tendinopathy is 

irreversible, as tendons do not heal because of their limited biological resources for 

repair [2]. Currently, there are no satisfactory treatments for tendon conditions, and they 

remain an important unmet medical need [3].  

The burden of tendinopathy affects differentially diverse populations, including athletes, 

workers and ageing people, with different anatomic vulnerability and economic burden 

[4]. The prevalence of pathology and affected tendons vary according to biological 

background, mechanical requirements of the muscle-tendon unit, and endogenous risk 

factors [5]. On the field of sports, the location of tendon injuries is often sport-specific, 

interfering extensively with practice, training and competition. For example, Achilles 

tendinopathy has 18% prevalence in recreational and competitive runners [6], whereas 

patellar tendinopathy is common among jumping athletes. On the other hand, elbow 

lesions (medial or lateral epicondylopathy) present frequently in the working population 

performing repetitive movements, and have 7% prevalence in manual workers versus 1-

3% in normal population [8]. Likewise, the incidence of rotator cuff pathology is around 

30% in the general population, and the prevalence of rotator cuff tears increases with 

age [9-10]. Patients’ age also increases the probability of having other concomitant risk 

factors for tendinopathy, including hormonal imbalances, obesity, diabetes and other 

metabolic diseases [5, 11]. 
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Over the past decades PRPs have emerged as a biological treatment to repair or 

regenerate impaired or non-functional tissue in different medical areas.  From the 

beginning, they were adopted by sports medicine physicians and orthopedists with high 

expectations of PRP performance, aiming to accelerate return to play [12]. Media 

coverage of anecdotal outcomes in elite athletes and other celebrities raised fascination 

in the public [13], and enhanced demand of PRP treatments. However, a robust 

scientific understanding of how PRP works and clinical evidence supporting specific 

indications take time and resources to develop and are not available yet.  

The molecular complexity of PRPs and its interactions with the different presentations 

of the host tissue constitute the core of PRP research. PRPs can serve to manipulate and 

enhance healing if we integrate molecular knowledge about PRP and its participation in 

healing mechanisms.  An additional layer of complexity, very inciting for the researcher 

to challenge, is characterizing the host tissue conditions, namely stage of the disease and 

altered mechanisms in the pathological tendon with which PRP has to interact.  

Here we provide insights into the current understanding of PRP therapies, as well as the 

recent advances in our knowledge of the pathophysiology of tendinopathy and the 

potential links between the two. To provide a framework for this link according to the 

most recent literature, we performed a comprehensive search in PubMed and 

MEDLINE using “tendon” and “platelet-rich plasma” as MeSH terms, and selected 

relevant articles published in the last five years. We also highlight the many 

opportunities that exist for further exploration and identification of strategically 

designed treatments associated with meaningful clinical benefit. 

 

2. NEW INSIGHTS INTO THE PATHOGENESIS OF TENDINOPATHY: 

IMPLICATIONS FOR PRP TREATMENT 
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Theories about the pathophysiology of tendinopathy are largely unproven, and may 

diverge depending on tendon type because of unique mechanical requirements and 

anatomical specificities. Broadly speaking, they can be reduced to two hypotheses, not 

mutually exclusive: first the “continuum model” [14], and second the “failed healing 

theory” [15-16]. The former consists on initial reactive tendinopathy, followed by 

tendon disrepair and degenerative tendinopathy with no evidence of inflammation 

throughout the course [14]. Tendinopathic changes are typically progressive and silent, 

hampering research in early disease stages, as patients are asymptomatic until they 

reach a threshold [17].  

On the other hand, according to the “failed healing” theory, [15-16] stalled healing 

mechanisms generate an innervated angiofibroblastic tissue, which is often painful and 

with reduced mechanical properties. Different interconnected biological processes, 

including inflammation, neuronal proliferation, imbalanced anabolism/catabolism and 

dysregulated apoptosis, lie beneath the pathology.  

2.1 Inflammation  

Recent research has provided crucial information emphasizing the relevance of 

inflammation, as a signal mediated response to both injury and loading, and its failure to 

resolve in tendinopathy [18-19]. Various cell types, through their crosstalk with positive 

and negative feedback loops, shape the main features of inflammation. Upon tendon 

injury, three cell sets, including infiltrating immune cells (i.e. monocytes/macrophages, 

lymphocytes), resident immune cells (mast cells [20], and tissue macrophages) along 

with stromal local cells (tenocytes and precursor cells) crosstalk and synchronize their 

activities to achieve healing or failed healing [21]. Converging themes in the 

pathophysiology are endogenous and exogenous risk factors that confer vulnerability to 

develop tendinopathy (Figure 1). 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ew
 E

ng
la

nd
] 

at
 1

2:
08

 0
5 

Ja
nu

ar
y 

20
18

 



Acc
ep

ted
 M

an
us

cri
pt

7 
 

Loading modifies these interactions, thereby producing a network linking inflammation, 

loading and healing. Interestingly, a similar expression of inflammatory molecules [22] 

and ECM related genes (COL1, COL3 and TGF-β1) [23] were achieved upon tissue 

stress, no matter the triggering agent: physical aggression through needling or 

mechanical loading, indicating a convergence of these pathways.  

Inflammation is a temporal and spatial concept, involving molecular and cell adaptions 

to stress. Contradicting the historical dogma of lack of inflammation in tendinopathy, a 

recent review of all data in the literature revealed increased numbers of macrophages 

and mast cells in tendinopathic tissue [24].   

For effective resolution of inflammation to occur, differentiation of macrophages is 

required. In fact, macrophages adopt a continuum spectrum of different phenotypes, 

from inflammatory, that is M1 phenotype expressing IL-1b and other pro-inflammatory 

molecules, to healing phenotype, M2, synthesizing growth factors, cytokines and 

specialized pro-resolving mediators (maresins) [25]. Balanced intensities and timing of 

macrophage transitions are key drivers of tendon regeneration and have become the 

focus of new therapeutic approaches [26].  

Animal models reinforce the association between inflammation and healing and also 

emphasize the importance of loading and the network thereby produced. This was 

confirmed in an Achilles tendon transection model, in which the temporal pattern of 

immune cell infiltration of rats receiving botox into calf muscle was compared with 

cage free moving rats. Loading prolonged the M1 phase (delayed the switch of M1-M2 

macrophages assessed as CCR7/CD206 ratio) with more Treg cells (Treg/Thelper ratio), 

and made the tendon regenerate bigger [27].  

Although M2 polarization is needed for the resolution of inflammation, excessive M2 

activity can result in a fibrotic tendon. Consistent with this, obese mice with type II 
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diabetes showed fibrotic tendon healing from excessive M2 activity [28]. As in other 

biological processes, a delicate balance between positive and negative feedback loops 

drives the resolution of inflammation and the quality of tendon repair.   

Stromal tendon cells are not just passive players. They mediate inflammation by 

polarizing into pro-inflammatory states, synthesizing IL-6, IL-8, GRO-a, RANTES and 

MCP-1, after exposure to IL-1β [29]. Interaction with IL-1β also enhanced MMP/TIMP 

ratio. Furthermore, exposing normal tendon explants to IL-1β showed degradative 

processes of ECM cleavage and release of COMP analogous to tendinopathy [30]. In 

supraspinatus tendinopathy, inflammation was present in stromal cells with a different 

molecular signature, depending on the stage of severity. Data revealed activation of 

IFN-ɣ and NF-kB in the initial stages and STAT6 and glucocorticoid pathways in 

advanced stages [30].  

Compromised cell survival [31] from crucial changes in ECM composition [32] is 

hypothesized in tendinopathy. On cell death, intracellular molecules named “alarmins” 

are released to the extracellular space. They act as DAMPs signaling tendon stress 

through TLR activation in immune cells [33] (reviewed in Millar NL 2013). 

Immunohistochemistry has revealed increased alarmin S100A9 and HIF-1α in painful 

rotator cuffs compared to non-painful diseased tendons, whereas a different alarmin, 

HMGB1, was increased in non-painful tendons. In addition, IL-33 was reduced in 

diseased tendons compared to controls [34]. IL-33 is also involved in collagen 

synthesis, so it provides a link between inflammation and ECM synthesis. Further 

experiments using explant cultures exposed to IL-1β in supraspinatus tendinopathy 

revealed different gene and protein expression pattern (IL-6 and IL-8) than healthy 

controls.  Immunostaining and flow cytometry also confirmed differences in 

podoplanin, VCAM-1 and CD106 [35]. Overall, these experimental data support 
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evolving inflammation with different molecular patterns according to disease stages and 

pain symptoms [36-37]. 

As proposed by a recent paradigm, resolving rather than suppressing inflammation 

might be necessary for tendon healing [18]. In this context, it is necessary to identify 

molecular checkpoints that limit inflammation and enhance ECM synthesis. In this 

regard, IL-33, IL-17A and IL-6 [38-39] were mechanically regulated and identified as 

molecular links between inflammation and collagen synthesis. Building on the overall 

data above we can envisage future research on molecular panels of biomarkers to assess 

the stage of disease and develop personalized biological treatments. 

2.2 Fibrosis 

Tendon fibrosis, a feature of tendinopathy, impairs normal ECM tension because of 

excessive deposition of collagen 1. As tendons are mechanosensitive, these changes in 

matrix stiffness compromise the maintenance of tendon fibroblast phenotype inducing 

their differentiation into myofibroblasts. Morita et al. [40] reviewed human and animal 

studies to explore the potential involvement of fibrotic factors, including TGFβ, BMPs 

and CTGF in tendon conditions. Their expression was altered during healing in both 

acute and overuse injuries [40].  

2.3 Neuronal dysregulation 

Importantly, neuronal dysregulation is a feature of tendinopathy and is related to pain 

perception. Thus studies comparing tissues from painful versus pain-free patients can 

help in clarifying pain features in tendinopathy and the lack of correlation with tissue 

pathologic changes. According to published data reviewed by Dean et al. [41] there 

were clear changes in the peripheral neuronal phenotype with important involvement of 

glutamatergic transmission, through both metabotropic and ionotropic glutamate 
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receptors [42]. In addition, autonomic, and sensory pathways contribute to pain with 

spatial and temporal differences [43].   

Different anatomical locations can display different patterns of immune response and 

distinct neural signaling. For example, nerve fascicles containing sensory afferents are 

present in the peritendinous tissue of painful epicondylopathy [44]. Upper limb 

tendinopathy was associated with central nervous system sensitization whereas patellar 

and Achilles tendinopathies showed a peripheral pain state [45]. 

 

3. PLASMA THERAPIES IN TENDINOPATHIES 

Several hypotheses about PRP interfering with the pathogenesis and perpetuation of 

tendinopathy have been explored as explained below. Currently, there is no irrefutable 

evidence that PRP regenerates tendons structurally [46-47], even if clinical symptoms 

lessen in most controlled studies [48]. But, in a therapeutic continuum, partial healing or 

catabasis with remission of symptoms are plausible at this stage of development of PRP 

technology. Certainly, as we discuss below, PRP formulations have to be tailored to 

specific conditions of the host tissue to obtain meaningful clinical efficacy. The use of 

combination products (cells + PRP) is also plausible in advanced conditions [49-51].  

3.1 Mechanisms of action  

According to the failed healing hypothesis, the ideal tendinopathy treatment should 

modify the pro-inflammatory response and promote resolution actively, encouraging 

robust and rapid matrix repair. Inducing an acute burst of inflammation in chronic 

tendinopathies may finish up initiating its resolution and subsequent healing.  

PRPs can modulate inflammation and healing through different modes of action, not 

mutually exclusive. First, activated platelets can establish direct platelet-immune cell 

interactions. In doing so, they can reduce the proliferation of T lymphocytes and their 
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differentiation towards T-helper type 17 lineage [52]. Using direct cell-binding 

mechanisms, platelets can also modulate the actions of macrophages [53] and their 

polarization state, which is associated with persistence or resolution of inflammation. 

Direct platelet-cell interactions can be favored by using activated platelets re-suspended 

in buffer without plasma.  

Second, upon activation of the coagulation cascade, PRPs release a large pool of 

extracellular ligands (the so-called secretome) that exert their actions via agonist 

properties at cognate receptors. In doing so, they regulate multiple cell functions, 

including inflammation, proliferation, differentiation, apoptosis and matrix anabolism. 

All these mechanisms can be activated because all this pool of extracellular ligands 

signal through different receptors associated with diverse signaling pathways. These 

interactions trigger diverse expression patterns on various cell types depending on the 

constitutive and inducible receptor expression. In addition, but less explored, 

microparticles and exosomes (nano and microvesicles) are involved in intercellular 

communication and can modulate tissue responses [54-55].  

Lastly, indirectly, PRPs can modify the biological status of pathological tissue by 

occupying the physical space, thereby altering the cytokine profile and removing signals 

of inflammation or ECM catabolism. This steric washout mechanism is favored by 

using high volumes and might be assimilated to saline injections (“placebo”). It does 

not exclude former described actions.  

According to these three mechanisms of action, spatial delivery of the product matters 

as cell signatures in the proper avascular tendon differ from those in the enthesis and 

surrounding vascularized structures, including endotenon, paratenon, tendon sheath or 

bursa [56-57]. Furthermore, the design of specific treatments for the enthesis could be 

anticipated.  When PRP was combined with kartogenin, fibrocartilage was formed in 
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enthesis lesions produced with a biopsy punch [58]. This combination treatment, PRP 

plus kartogenin, also enhanced tendon graft integration within the bone tunnel during 

ACL reconstruction in a rat model [59]. 

3.2 Main cellular targets of PRP  

In the last few years, advances with PRP for tendon regeneration were focused first on 

immune-modulatory actions, and second on stromal cell biology (tenocytes and 

precursors) in laboratory controlled experiments. In vivo, both actions occur in parallel 

as PRP modulates the crosstalk between the different cell phenotypes.  

3.2.1 PRP and innate immune cells  

PRP is immunomodulatory acting on both the infiltrative and local immune cells, i.e. 

resident macrophages and resident mast cells.  Catecholamines, histamine and other 

metabolites in PRP induce vascular permeability and favor transmigration across the 

endothelium of various leukocyte subsets. PRP application produces gradients of 

chemoattractants for neutrophils by means of β-thromboglobulin (also known as 

neutrophil activating peptide-2, (NAP-2)), CXCL1/GRO, ENA78/ CXCL5, and IL-8 

among others. In addition, infiltration of monocytes is driven by MCP-1 and RANTES 

gradients.  

Other abundant molecules within PRP can modulate the polarization of macrophages. 

For example, PF-4, representing 25% of the α-granule content has been involved in 

macrophage polarization [60]. However, genome wide expression profiling data in rats 

did not show any effect on macrophage polarization when PRP was compared to the 

PPP [61]. Apparently, no clear single definite pathway is strongly targeted with PRP, 

but according to genome wide expression arrays modulated pathways included NF-kB 

and TNF-α signaling when compared to PPP.  This is part of a larger program, as a 
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decreased expression of ECM genes and enhanced autophagy related genes and ROS 

were also identified) [61].  

3.2.2 PRP and stromal tendon cells  

At the beginning, the common paradigm of PRP healing actions was based on the 

proliferative potential of growth factors, crucial for achieving a critical number of local 

stromal cells. PRP increases proliferation of tendon cells by modulating Stat3 and p27 

to up-regulate expression of cyclins and cyclin-dependent kinases [62].  

However, PRP research should not be restricted to growth factors but broaden to take 

into account the biological actions of small molecules released from dense granules. 

Furthermore, the crucial signaling actions of cytokines and chemokines form part of a 

larger regeneration program.  

Stem cells have great importance in PRP therapies, as they contribute to healing or non-

healing. Current data indicated that there might be different sources of tendon stem cells 

with multilineage potential: vascular and non-vascular. The former can be found in 

epitenon and endotenon, harbored by the wall of capillaries and blood vessels [63], and 

the latter in the proper tendon [64].  

PRP can enhance mobilization of stem cells from other sources to the location of the 

injury [65]. Actually, platelets provide initial cues, such as PDGF-B, bFGF and CXCL5, 

for the homing of circulating precursor cells to the injury [66]. PF-4 works in 

cooperation with PDGF and CXCL7 to activate fibroblasts’ migration [67]. As a tendon 

is connected to muscle, stem and progenitor cells of skeletal muscle might also be a 

possible source of stem cells for tendon repair after injury. 

Not only migration, but the fate of these endogenous stem cells can be influenced by the 

cytokines contained in PRP. Recent work has shown that platelet-rich releasates (that is 

the soluble fraction obtained after the coagulation of PRP) promoted tenogenic 
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differentiation of progenitor cells [68-69] and leukodepleted PRP was safer than 

leukocyte-rich PRP (L-PRP) [70]. Animal experiments [70-71] corroborated these 

hypotheses as activation of the niche with PRP promoted regeneration of rat Achilles 

tendon in two models: acute rupture in rats [71] and collagenase induced tendinopathy 

[65].  

Most of the signaling molecules from α-granules are active in the picogram to 

nanogram dose-range. But platelet factor-4 (PF-4) is in the microgram range [72].  

Migration, proliferation and adequate differentiation underlie regeneration. Data from 

individual actions of growth factors (isolated from the full molecular pool of PRP) can 

serve to formulate hypotheses, but cannot be extrapolated. In this sense, in vitro and in 

vivo data [73] revealed activation of the tendon niche with CTGF (present in PRP), in 

particular CD146+ TSCs. These cells underwent robust proliferation and differentiated 

into tenocytes after 7 days, leading to collagen organization and tendon regeneration.  

Importantly, the activities of platelet secretome and plasma circulating elements are 

regulated at multiple levels. In particular TGF-β, IGF-I and HGF are inactive while 

circulating and need proteolytic activation to participate in healing [74-75].  Recent data 

indicate that tissue injury activates a pro-HGFA enzyme, which in turn renders HGF 

active. This is an important mechanism: HGF interaction with the local niche enhances 

tendon regeneration [76]. 

3.3 PRP and apoptosis  

Platelets control the balance from apoptosis towards cell survival by secreting mediators 

with anti- and pro-apoptotic functions [77]. This is relevant for the treatment of tendon 

conditions as excessive apoptosis was identified [31]. Platelets’ microparticles can 

enhance survival through phosphorylation and activation of Akt, which inactivates the 

pro-apoptotic BCL-2 family member BAD [55]. Antiapoptotic effects of PRP can also 
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be attributed to PRP secretome, including HGF, SDF-1α, serotonin, ADP, and 

sphingosine-1-phosphate IGF-1, IGFBP1, IGFBP2, BDNF, TIMP-1, PROC, INHBA, 

TAC1 [78].  On the other hand, platelets release TNF-α related ligands, which are pro-

apoptotic, including CD95 (FAS-L), CD154 (CD40L), Apo2-L (TRAIL), Apo3-L 

(TWEAK), and LIGHT [76]. Mostly, PRP can augment the molecular milieu and 

decisively define the delicate balance between pro- and anti-survival molecules. 

Furthermore, in the actual context of tendon management with anesthetics [79] and 

corticosteroids [80] (reviewed in Abate 2017), local cytotoxicity is acknowledged and 

could be potentially counteracted by PRP. Whether PRP affords protection against the 

deleterious effects of lidocaine and other commonly used aminoamide local anesthetics 

(such as ropivacaine, mepivacaine or bupivacaine) and corticosteroids is controversial. 

Inhibition of apoptotic pathways (i.e. inactivation of pro-apoptotic proteins, regulation 

of caspases’ activities) or activation of cell survival pathways has been explored in vitro 

but timing and doses strongly influence results, which are not conclusive.  

3.4 Differences between plasma formulations 

Different formulations, with differing biological effect in vitro, are obtained depending 

on the method of preparation or commercial protocol. The hypothesis that clinical 

outcomes were influenced by PRP formulation encouraged the development of 

classification systems according to constituents and their stoichiometry [81]. In 

experimental research, studies comparing leukodepleted PRP and L-PRP, showed that 

the presence of leukocytes and platelet count influenced inflammation and matrix 

turnover (MMPs, ADAMTs, TIMPs). In vitro 3D cultures showed that L-PRP and PRP 

are chemotactic for tendon cells from healthy and pathological tissues. PPP did not 

stimulate cell migration. On the other hand, L-PRP is more pro-inflammatory than pure 

PRP or PPP in vitro as assessed by gene expression and further confirmed with protein 
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assessments (IL-6, IL-8, MCP-1, GRO-α, RANTES) [82]. Accordingly, L-PRP induced 

higher inflammation (enhanced TNF-α and IL-1β/IL-1ra ratio) than pure PRP in tendon 

explants [83] and also in tendinopathic cells [84]. Animal models of collagenase 

induced tendinopathy confirmed these data. Intra-tendon delivery of pure PRP was 

better than L-PRP as assessed by MRI, transmission electron microscopy and histology 

(analyzed under polarized light microscopy). Four weeks after treatment, L-PRP treated 

tendons displayed higher signal intensities on T2 mapping indicative of inflammatory 

edema [85]. In addition to being pro-inflammatory, L-PRP induced non-tenocyte 

differentiation of tendon stem cells [67-68]. PRP and PPP stimulated cells to produce 

ECM in more degree than L-PRP. The number of platelets [86] and the ratio 

platelets:leukocytes [87] influenced the synthesis of ECM, with higher platelet 

concentrations being detrimental for tissue anabolism.  

Up to 2014, most clinical studies reported the use of L-PRP (in 97% of patients) [88], 

but later studies are testing the efficacy of pure PRP. Direct clinical comparisons 

between both products in tendinopathy are lacking.  

Biological differences between these formulations can improve our treatments, but we 

have to establish specific indications. Furthermore, we have to consider the specific 

location of the injury (i.e. musculotendinous or enthesis), as muscle injuries can heal 

better with plasma without platelets (i.e. platelet poor plasma, PPP). The reason is that 

PPP promotes the differentiation of satellite cells into myoblasts instead of promoting 

proliferation, as occurs with PRP [89]. 

4. HOW EFFECTIVE IS PRP IN TREATING TENDINOPATHIES?  

Although some degree of success has been achieved, PRP is not considered standard 

medical treatment nor is it paid by insurance companies because of the lack of strong 

evidence about is efficacy and non-demonstrated cost effectiveness. However, clinical 
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research is evolving continuously, and data from new randomized clinical trials can help 

to overcome heterogeneity in meta-analyses. In general, pain relief is the main outcome 

measurement used when pooling data from different studies performed at different 

anatomical locations [48,88]. Other measures of outcome include patient self-reported 

scores. However, the variability of formulations, volumes, procedures for application, 

number of interventions and interval between them as well as the heterogeneity of 

outcome measurements and comparators, limit the applicability of these statistical 

results.   

Fitzpatrick et al pooled data from 18 clinical studies, 17 of which had low or medium 

risk of bias involving all anatomical areas, performed a network meta-analysis and 

found that PRP is more efficient than other treatments. Moreover, they found that LR-

PRP yielded better outcomes than leuco-depleted PRPs. However, these analyses of 

data are blurred because of the heterogeneity of the comparators. These results might fit 

with the hypothesis of unresolved inflammation and triggering a bout of inflammation 

with L-PRP thus activating subsequent healing mechanisms.  

Reviews and meta-analyses focusing on particular anatomical areas are imperative, as 

lower and upper limb tendinopathies differ with different segments of the population 

being affected. Using the subgroup approach, patellar tendinopathy, and epicondylitis 

have been reviewed. The problem when performing subgroups is power reduction. For 

example, a very recent review and meta-analysis [90] of PRP intervention in patellar 

tendinopathy found only two eligible randomized controlled studies [91-92], involving 

one and two injections respectively  for recalcitrant patients. Control groups differed 

(ESWT and dry needling). When pooling all the results, PRP was better than controls at 

the common longer follow-up (six months). The number of patients is reduced and the 

heterogeneity of interventions claims more research in this specific application.  In a 
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recent update of clinical data, we identified 15 randomized clinical studies in 

epicondylar tendinopathy. A common result after combination of studies is 

improvement in the middle term (6 months) but not in the short term [93], comparators 

include corticosteroids, peripheral blood, saline, anesthetic, dry-needling, physical 

therapy and surgery. When 10 of these studies were combined in a network 

metaanalysis (peripheral blood, corticosterois and PRP), results showed that both PRP 

and blood can improve pain and enhance function but patients treated with blood had a 

higher risk of adverse event [94]. The fact that epicondylopathy has free-pain periods 

achieved spontaneously hinders interpretation of results and enhancement of study 

design. 

Correlations between cytokines and clinical outcomes are an emerging area of research 

and can help in treatment optimization.  Lim et al., [95] in a controlled study including 

156 patients with 24 weeks follow-up, measured PDGF-AB, -BB, TGF-β, VEGF, EGF 

and IL-1β, and their association with clinical and imaging outcomes was examined. 

TGF-β and VEGF levels increased significantly with changes in MRI grade. TGF-β 

significantly correlated with outcome and MRI in PRP treated patients. Accordingly, 

Lyras et al. [96] found enhanced expression of TGF-β in patellar tendons of rabbits 

treated with PRP. TGF-β is a pleiotropic factor and reduced expression of TGF-β1, 

TGF-βR1 and R2 compared to healthy tissue was found in pathologic rotator cuff [97].   

The urge for tendinopathy treatments generates novel hypothesis. In the past years, we 

witnessed evolving data revealing how the microbiota shapes the immune response. In 

this context, recent research has identified the presence of bacteria (predominantly 

Staphylococcus genus) in 5 out of 20 samples obtained from spontaneous Achilles 

tendon ruptures during reconstructive surgery [98]; hamstring tendons used as control 

did not show any bacterial contamination. Intriguingly, a recent experimental study has 
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reported differential PRP healing effects related to microbiota in rat Achilles tendons 

[99]. Taken together, these results point out the crucial role of the immune system in 

healing and open a new avenue for research. 

Despite the socio-economic impact of tendinopathy the public awareness is low. 

However, new insights into the pathogenesis of tendinopathy and the optimization of 

PR therapies may help to trigger healing mechanism, mainly by modification of the 

molecular microenvironment. But PRP is not a monotherapy, it might be used in 

combination with cells and as part of a broader treatment program that includes load and 

pain management. 

5. EXPERT OPINION 

Tendinopathy is not a single entity, and a single etiopathogenetic hypothesis cannot fit 

all types and locations of tendinopathy. Development of PRP or other biological 

treatments is challenging because the typical group of patients with tendinopathy (age, 

sex, bone mass index, risk factors) does not exist as it affects multiple segments of the 

population with different mechanical requirements. The failed healing theory is what is 

currently explored as it fits with histopathological findings. However, these findings do 

not correlate with the clinical symptomatology, mainly pain.  

A new understanding of the reason, why healing fails to resolve in tendinopathy, is 

needed to develop clinically meaningful biological therapies. Recent research on 

pathogenic mechanisms of tendinopathy has focused on immune modulation and 

inflammation as merging biological processes involved in healing or failed healing, 

Specifically, finding new methods for driving polarization of macrophages towards 

regenerative phenotypes is a focus of PRP research.  

Failed resolution of inflammation is viewed as an active process that needs to be 

counteracted. In this context, the foundation of PRP is to provide supra-physiological 
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concentrations of chemokines and other cytokines involved in immune regulation. In 

doing so, PRP can rebalance the molecular milieu within the pathological tissue, and 

can have an active role in resolving inflammation thereby achieve healing. Thus, in this 

context “medicine” is not a “drug” but the “molecular milieu” we produce. Therefore, 

PRP application should not be driven by the same concepts involved in drug 

administration, and development of application protocols (volume, number of 

injections, and spatial distribution of the product) is essential [100-103]. 

PRP is not a monotherapy but with knowledge from further studies it might be used to 

create an optimal macromolecular milieu for recovery/regeneration as part of a broader 

treatment program. 

The arguments for using PRP for tendinopathy are increasing, and the field is 

progressing based on good focused science revealing that PRP contains tendoinductive 

factors, which can activate and differentiate endogenous stem cells. Improvement of 

PRP therapies can be achieved by creating combination products with mesenchymal 

cells. Actually, PRP may be able to protect stem cells to maintain their regenerative 

potential under severe host conditions. But not all PRP formulations are tendoinductive: 

thus, they should be carefully tailored according to the desired effect (L-PRP is not 

tenogenic). Furthermore, precise protocols for PRP application and specific guidance 

cues have to identify the spatial location of tendon stem cells. Not only temporal but 

spatial delivery merits further investigation. 

Although some degree of clinical success has been achieved, PRP is not considered 

standard medical treatment, nor is it paid by insurance companies. The variability of 

PRP formulations hinders interpretation of research data and delays optimization of 

treatment protocols. Moreover, clinical studies show that PRP works only in selected 

patients. The concept that young blood is more effective than old was developed in 
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parabiotic experiments with rats mainly in Alzheimer disease, and offers a new way for 

identification of factors that can enhance healing [104]. Using allogeneic young PRP 

from healthy subjects might help in some patients [105].  

No clear definite pathway is strongly targeted by PRPs; thus, the identification of useful 

parameters for quality control has not been possible to date. The option of lyophilizing 

“high quality” PRPs, while preserving their biological activities, may be a promising 

future [106]. 

Unanswered questions remain mainly about the characteristics of tendinopathy within 

the different stages of progression, in specific anatomical areas. Progress can be based 

on identifying subtypes of tendinopathy, the ambition is to find out biomarker panels 

and/or imaging markers. This review gives hope for tendon regeneration by tailoring 

PRPs to intervene at various points along the pathway of the disease.  

 

 

FIGURE LEGENDS 

Figure 1 Converging themes in the pathophysiology are endogenous and exogenous 

risk factors that confer vulnerability to develop tendinopathy. Key advances in the last 

years consider inflammation as merging biological mechanisms crucial to the onset and 

perpetuation of tendinopathy. 
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ABBREVIATURES 

ADP adenosine di-phosphate 

AKT Rac protein kinase alpha 

BDNF brain derived neurotrophic factor 

bFGF basic fibroblastic growth factor 

CTGF connective tissue growth factor 

DAMP danger associated molecular pattern 
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HGF hepatocyte growth factor 
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IGF insulin like growth factor 

IGFBP insulin like growth factor binding protein 

IL interleukin 

L-PRP leukocyte rich platelet rich plasma 

MCP-1 Monocyte chemoattractant protein 1 

MMP metalloproteinase 

MRI magnetic resonance imaging 

NAP-2 neutrophil activating peptide 

NFkB nuclear factor kappa B 

PDGF platelet derived growth factor 

PF4 platelet factor 

PGE2 prostaglandin E 

PPP platelet poor plasma 

Prdx1 peroxiredoxin 1 

PRP platelet rich plasma 

RANTES  T-cell specific RANTES protein 

ROS reactive oxygen species 

SDF-1α stromal cell-derived factor 

TGF-β transforming growth factor  

TGF-βR transforming growth factor receptor 

TIMP tissue inhibitory metalloproteinase 

TLR Toll-like receptor 

TNF-α tumor necrosis factor 
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TSC tendon stem cell 

TSP-1 thrombospondin 1 

VEGF vascular endothelial growth factor 

 

Figure 1: 
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